

Table Of Contents

1 Executive Summary

2 Audit Methodology

3 Project Overview

3.1 Project Introduction

3.2 Coverage

3.3 Vulnerability Information

4 Findings

4.1 Visibility Description

4.2 Vulnerability Summary

5 Audit Result

6 Statement

1 Executive Summary

On 2023.05.10, the SlowMist security team received the team's security audit application for ord, developed the

audit plan according to the agreement of both parties and the characteristics of the project, and finally issued

the security audit report.

The SlowMist security team adopts the strategy of "white box" to conduct a complete security test on the project

in the way closest to the real attack.

The test method information:

Test method Description

Black box testing Conduct security tests from an attacker's perspective externally.

Grey box testing
Conduct security testing on code modules through the scripting tool, observing the

internal running status, mining weaknesses.

White box

testing

Based on the open source code, non-open source code, to detect whether there are

vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level Description

Critical
Critical severity vulnerabilities will have a significant impact on the security of the DeFi

project, and it is strongly recommended to fix the critical vulnerabilities.

High
High severity vulnerabilities will affect the normal operation of the DeFi project. It is

strongly recommended to fix high-risk vulnerabilities.

Medium
Medium severity vulnerability will affect the operation of the DeFi project. It is

recommended to fix medium-risk vulnerabilities.

Low

Low severity vulnerabilities may affect the operation of the DeFi project in certain

scenarios. It is suggested that the project party should evaluate and consider whether

these vulnerabilities need to be fixed.

Weakness
There are safety risks theoretically, but it is extremely difficult to reproduce in

engineering.

Suggestion There are better practices for coding or architecture.

In black box testing and gray box testing, we use methods such as fuzz testing and script testing to test the

robustness of the interface or the stability of the components by feeding random data or constructing data with

a specific structure, and to mine some boundaries Abnormal performance of the system under conditions such

as bugs or abnormal performance. In white box testing, we use methods such as code review, combined with

the relevant experience accumulated by the security team on known blockchain security vulnerabilities, to

analyze the object definition and logic implementation of the code to ensure that the code has the key

components of the key logic. Realize no known vulnerabilities; at the same time, enter the vulnerability mining

mode for new scenarios and new technologies, and find possible 0day errors.

2 Audit Methodology

The security audit process of SlowMist security team for smart contract includes two steps:

Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using

automated analysis tools.

Manual audit of the codes for security issues. The contracts are manually analyzed to look for any potential

problems.

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart

contract:

NO. Audit Items Result

1 Design Logic Audit Some Risks

2 Others Passed

3 State Consistency Audit Some Risks

4 Failure Rollback Audit Passed

5 Unit Test Audit Passed

6 Integer Overflow Audit Passed

7 Parameter Verification Audit Passed

NO. Audit Items Result

8 Error Unhandle Audit Passed

9 Boundary Check Audit Passed

10 SAST Some Risks

3 Project Overview

3.1 Project Introduction

Ord is an index, block explorer, and command-line wallet.

This audit focuses on checking whether the realization meets expectations against the following documents:

3.2 Coverage

Target Code and Revision:

https://github.com/okx/ord/tree/dev

Initial review commit: 97562216b9f61be396ae63b55257d95073a9f73c

Final review commit: 1257e4b92b11ce8d7c5f7e767ca668f5fcab1a96

https://github.com/okx/ord/tree/dev/src/brc20/updater.rs

https://github.com/okx/ord/tree/dev/src/index/updater/inscription_updater.rs

https://github.com/okx/ord/tree/dev/src/index/updater.rs

3.3 Vulnerability Information

The following is the status of the vulnerabilities found in this audit:

https://domo-2.gitbook.io/brc-20-experiment/1.

https://docs.ordinals.com/introduction.html2.

NO Title Category Level Status

N1 Supply chain security SAST Suggestion Confirmed

N2
Block can have more

than 20k inputs

Design Logic

Audit
Suggestion Confirmed

N3

Multi-threaded

asynchronous

processing of outputs

may lead to sequential

errors

State

Consistency

Audit

Low Confirming

N4

Coinbase transactions

may be used to

construct inscriptions

Design Logic

Audit
Low Acknowledged

N5

Not detecting the

relationship between

self.height and block

height

Design Logic

Audit
Suggestion Confirmed

N6

JSON extensibility

leads to consensus

fork risk

Design Logic

Audit
Low Acknowledged

N7
output_value cannot

be equal to 0

Design Logic

Audit
Low Acknowledged

N8

Multiple legitimate

inputs in a transaction

may lead to consensus

forking

Design Logic

Audit
Low Acknowledged

N9

Unspecified

parameters may lead

to consensus forking

Design Logic

Audit
Low Acknowledged

N10
Deploy limit may be

out of range

Design Logic

Audit
Low Acknowledged

4 Findings

4.1 Visibility Description

The SlowMist Security team analyzed the visibility of major contracts during the audit, the result as follows:

4.2 Vulnerability Summary

[N1] [Suggestion] Supply chain security

Category: SAST

Content

Crate: time

Version: 0.1.45

Title: Potential segfault in the time crate

Date: 2020-11-18

ID: RUSTSEC-2020-0071

URL: https://rustsec.org/advisories/RUSTSEC-2020-0071

Severity: 6.2 (medium)

Solution: Upgrade to >=0.2.23

Dependency tree:

time 0.1.45

└── chrono 0.4.24
 ├── rustls-acme 0.5.3
 │ └── ord 0.5.2
 ├── ord 0.5.2
 ├── diligent-date-parser 0.1.4
 │ └── atom_syndication 0.12.1
 │ └── rss 2.0.3
 │ └── ord 0.5.2
 └── atom_syndication 0.12.1

Solution

Crate time upgrade to >=0.2.23

Status

Confirmed

[N2] [Suggestion] Block can have more than 20k inputs

Category: Design Logic Audit

Content

 // Not sure if any block has more than 20k inputs, but none so far after first

inscription block

src/index/updater.rs

 const CHANNEL_BUFFER_SIZE: usize = 20_000;

 let (outpoint_sender, mut outpoint_receiver) =

 tokio::sync::mpsc::channel::<OutPoint>(CHANNEL_BUFFER_SIZE);

 let (value_sender, value_receiver) = tokio::sync::mpsc::channel::<u64>

(CHANNEL_BUFFER_SIZE);

The maximum size of a transaction is close to the block size (4M), while the size of a transaction can be less than

200, which can theoretically exceed 20k inputs.

Solution

Increase CHANNEL_BUFFER_SIZE.

Status

Confirmed; CHANNEL_BUFFER_SIZE is the capacity of the channel, not affect business results.

[N3] [Low] Multi-threaded asynchronous processing of outputs may lead to sequential errors

Category: State Consistency Audit

Content

std::thread::spawn(move || {

 let rt = tokio::runtime::Builder::new_multi_thread()

 .enable_all()

 .build()

 .unwrap();

 rt.block_on(async move {

 loop {

 let Some(outpoint) = outpoint_receiver.recv().await else {

 log::debug!("Outpoint channel closed");

 return;

 };

 // There's no try_iter on tokio::sync::mpsc::Receiver like

std::sync::mpsc::Receiver.

 // So we just loop until BATCH_SIZE doing try_recv until it returns None.

 let mut outpoints = vec![outpoint];

 for _ in 0..BATCH_SIZE-1 {

 let Ok(outpoint) = outpoint_receiver.try_recv() else {

 break;

 };

 outpoints.push(outpoint);

 }

 // Break outpoints into chunks for parallel requests

src/index/updater.rs

 let chunk_size = (outpoints.len() / PARALLEL_REQUESTS) + 1;

 let mut futs = Vec::with_capacity(PARALLEL_REQUESTS);

 for chunk in outpoints.chunks(chunk_size) {

 let txids = chunk.iter().map(|outpoint| outpoint.txid).collect();

 let fut = fetcher.get_transactions(txids);

 futs.push(fut);

 }

 let txs = match try_join_all(futs).await {

 Ok(txs) => txs,

 Err(e) => {

 log::error!("Couldn't receive txs {e}");

 return;

 }

 };

 // Send all tx output values back in order

 for (i, tx) in txs.iter().flatten().enumerate() {

 let Ok(_) =

value_sender.send(tx.output[usize::try_from(outpoints[i].vout).unwrap()].value).await

else {

 log::error!("Value channel closed unexpectedly");

 return;

 };

 }

 }

 })

});

The new_multi_thread() function creates a runtime that can run multiple OS threads, which means that

asynchronous tasks in this runtime can run concurrently, taking advantage of the power of multi-core

processors.

However, the completion time of each thread in the concurrent runtime is not always the same, and the

transaction with the next highest order is called value_sender.send first, causing an error in the order.

Solution

Use a type like map instead of vector to record the results of asynchronous runs.

Status

Confirming

[N4] [Low] Coinbase transactions may be used to construct inscriptions

Category: Design Logic Audit

Content

if let Some((tx, txid)) = block.txdata.get(0) {

self.index_transaction_sats(

 tx,

 *txid,

 &mut sat_to_satpoint,

 &mut coinbase_inputs,

 &mut sat_ranges_written,

 &mut outputs_in_block,

 &mut inscription_updater,

 index_inscriptions,

)?;

}

the coinbase transaction in Bitcoin does indeed have specific format rules. It's the first transaction in every new

block and it creates new bitcoins and pays them to the miner as a reward. Here are some format restrictions on

a coinbase transaction:

Some additional transaction inputs and outputs may be considered legitimate if these rules are met, so coinbase

transactions cannot be ignored.

src/index/updater.rs

Input count: A coinbase transaction has only one input.

Previous output index: The previous output index (previous output index) that the input of a coinbase

transaction references has to be set to 0xFFFFFFFF.

Previous transaction ID: The previous transaction ID (previous transaction id) that the input of a

coinbase transaction references has to be set to 32 bytes of 0.

Unlocking script (Signature Script): The unlocking script (also known as the signature script or scriptSig)

of the input of a coinbase transaction must contain specific data. The first four or five bytes have to be

a special value which is the height of the block. After this, miners can place arbitrary data into the

unlocking script, but the total length of this data has to be between 2 bytes to 100 bytes.

Outputs: The outputs of a coinbase transaction contain the newly created bitcoins, which are paid to

the miner. The quantity of the newly created bitcoins is determined by Bitcoin's monetary policy, which

states that the quantity of new bitcoins created halves every 210,000 blocks. Additionally, the outputs

of a coinbase transaction can also contain bitcoins that the miner collected from transaction fees.

Solution

Defensive programming is recommended and can also be effective in detecting when coinbase is used to

construct inscriptions

Status

Acknowledged; Inscriptions are considered only for index 0 in the input.

[N5] [Suggestion] Not detecting the relationship between self.height and block height

Category: Design Logic Audit

Content

for (txid, brc20_transaction) in inscription_collects {

 brc20_action_count +=

 brc20_updater.index_transaction(self.height, block.header.time, txid,

brc20_transaction)?

 as u64;

}

statistic_to_count.insert(&Statistic::LostSats.key(), &lost_sats)?;

statistic_to_count.insert(&Statistic::BRC20ActionCount.key(), &brc20_action_count)?;

height_to_block_hash.insert(&self.height, &block.header.block_hash().store())?;

self.height += 1;

self.outputs_traversed += outputs_in_block;

Solution

Here you can add a defensive programming, self.height==block.bip34_block_height()

Status

Confirmed

[N6] [Low] JSON extensibility leads to consensus fork risk

Category: Design Logic Audit

Content

src/index/updater.rs

#L130:

deserialize_brc20_operation(Inscription::from_transaction(&inscribe_tx).unwrap())

#L184:

if let Ok(operation) = deserialize_brc20_operation(inscription.unwrap()) {

The json in the inscription will be parsed here.

pub fn deserialize_brc20(s: &str) -> Result<Operation, JSONError> {

 let value: Value = serde_json::from_str(s).map_err(|_| JSONError::InvalidJson)?;

 if value.get("p") != Some(&json!(PROTOCOL_LITERAL)) {

 return Err(JSONError::NotBRC20Json);

 }

 Ok(serde_json::from_value(value).map_err(|e|

JSONError::ParseOperationJsonError(e.to_string()))?)

}

The serde_json::from_value() function in Rust will indeed ignore fields in the JSON data that are not defined in

the target type.

When deserializing with the Serde library in Rust, if a field is not defined in your target type but exists in the

input JSON data, this field is ignored.

If some extra fields are added to a legitimate brc20 json format, it can be parsed normally, but this behavior may

be a consensus violation and may create a consensus fork.

PoC like this:

{

"p":"brc-20",

"op":"deploy",

"tick":"web9",

"max":"21000000",

"lim":"1000",

"ex-field-1":"1",

"ex-field-2":"100"

}

src/index/updater/inscription_updater.rs

Solution

Need for clearer community consensus

Status

Acknowledged

[N7] [Low] output_value cannot be equal to 0

Category: Design Logic Audit

Content

let mut output_value = 0;

for (vout, tx_out) in tx.output.iter().enumerate() {

 let end = output_value + tx_out.value;

 while let Some(flotsam) = inscriptions.peek() {

 if flotsam.offset >= end {

 break;

 }

 let new_satpoint = SatPoint {

 outpoint: OutPoint {

 txid,

 vout: vout.try_into().unwrap(),

 },

 offset: flotsam.offset - output_value,

 };

 let flotsam = inscriptions.next().unwrap();

 self.update_inscription_location(input_sat_ranges, flotsam, new_satpoint)?;

 if let Some(inscription_data) = inscriptions_collector

 .iter_mut()

 .find(|key: &&mut (u64, InscriptionData)| {

 key.1.inscription_id == flotsam.clone().inscription_id

 })

 .map(|value| &mut value.1)

 {

 let action = &mut inscription_data.action;

 action.set_to(Some(tx_out.script_pubkey.clone()));

 inscription_data.action = action.clone();

 inscription_data.new_satpoint = Some(new_satpoint);

 }

src/index/updater/inscription_updater.rs

 }

 output_value = end;

 self.value_cache.insert(

 OutPoint {

 vout: vout.try_into().unwrap(),

 txid,

 },

 tx_out.value,

);

}

Solution

Check if output_value is greater than 0

Status

Acknowledged; If output is 0, then the inscription will be transferred to the miner, which is legal on consensus.

[N8] [Low] Multiple legitimate inputs in a transaction may lead to consensus forking

Category: Design Logic Audit

Content

let mut input_value = 0;

for tx_in in &tx.input {

 if tx_in.previous_output.is_null() {

 input_value += Height(self.height).subsidy();

 } else {

 for (old_satpoint, inscription_id) in

 Index::inscriptions_on_output(self.satpoint_to_id, tx_in.previous_output)?

 {

 inscriptions.push(Flotsam {

 offset: input_value + old_satpoint.offset,

 inscription_id,

 origin: Origin::Old(old_satpoint),

 });

 let inscribe_satpoint = SatPoint {

 outpoint: OutPoint::new(inscription_id.txid, inscription_id.index),

 offset: 0,

 };

src/index/updater/inscription_updater.rs

 if !is_coinbase {

 if old_satpoint == inscribe_satpoint {

 let inscribe_tx = if let Some(t) =

self.tx_cache.remove(&inscription_id.txid) {

 t

 } else {

 self

 .index

 .get_transaction_with_retries(inscription_id.txid)?

 .ok_or(anyhow!(

 "failed to get inscription transaction for {}",

 inscription_id.txid

))?

 };

 if let Ok(_) =

deserialize_brc20_operation(Inscription::from_transaction(&inscribe_tx).unwrap())

 {

 inscriptions_collector.push((

 input_value + old_satpoint.offset,

 InscriptionData {

 txid,

 inscription_id,

 old_satpoint,

 new_satpoint: None,

 action: Action::Transfer(TransferAction {

 from_script: inscribe_tx

 .output

 .get(0)

 .ok_or(anyhow!("faild to index output for {}",

inscription_id.txid))?

 .script_pubkey

 .clone(),

 to_script: None,

 }),

 },

))

 }

 };

 }

 }

 input_value += if let Some(value) =

self.value_cache.remove(&tx_in.previous_output) {

 value

 } else if let Some(value) = self

 .outpoint_to_value

 .remove(&tx_in.previous_output.store())?

 {

 value.value()

 } else {

 self.value_receiver.blocking_recv().ok_or_else(|| {

 anyhow!(

 "failed to get transaction for {}",

 tx_in.previous_output.txid

)

 })?

 }

 }

}

There may be more than one legal input in the transaction.

Solution

When a brc20 is successfully obtained, it should break or return to stop continuing to detect the input of the

current transaction, the subsequent inputs may not be consensus.

Status

Acknowledged; Inscriptions are considered only for index 0 in the input.

[N9] [Low] Unspecified parameters may lead to consensus forking

Category: Design Logic Audit

Content

let dec = Num::from_str(&deploy.decimals.map_or(MAX_DECIMAL_WIDTH.to_string(), |v|

v))?

 .checked_to_u8()?;

if dec > MAX_DECIMAL_WIDTH {

 return Err(Error::BRC20Error(BRC20Error::InvalidDecimals(dec)));

}

let base = BIGDECIMAL_TEN.checked_powu(dec as u64)?;

let supply = Num::from_str(&deploy.max_supply)?;

if supply > Into::<Num>::into(u64::MAX) {

 return Err(Error::BRC20Error(BRC20Error::InvalidMaxSupply(supply)));

}

src/brc20/updater.rs

There is no mention of a maximum decimals of 18 in the reference #1, which may lead to consensus forking.

There is no mention of a maximum max of u64::MAX in the reference #1, which may lead to consensus

forking.

Solution

Need for clearer community consensus

Status

Acknowledged

[N10] [Low] Deploy limit may be out of range

Category: Design Logic Audit

Content

if limit.sign() == Sign::NoSign

 || limit > Into::<Num>::into(u64::MAX)

 || limit.scale() > dec as i64

{

 return Err(Error::BRC20Error(BRC20Error::MintLimitOutOfRange(

 lower_tick.as_str().to_string(),

 limit,

)));

}

Theoretical limit must <= supply .

Solution

if limit.sign() == Sign::NoSign

 || limit > Into::<Num>::into(u64::MAX)

 || limit.scale() > dec as i64

 || limit > supply

{

 return Err(Error::BRC20Error(BRC20Error::MintLimitOutOfRange(

 lower_tick.as_str().to_string(),

 limit,

)));

}

src/brc20/updater.rs

Status

Acknowledged; In other implementations, restrict > supply is allowed, such as unisat.

5 Audit Result

Audit Number Audit Team Audit Date Audit Result

0X002305120001 SlowMist Security Team 2023.05.10 - 2023.05.12 Passed

Summary conclusion: The SlowMist security team use a manual and SlowMist team's analysis tool to audit the

project, during the audit work we found 7 low risk, 3 suggestion vulnerabilities.

6 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this

report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this

project, and is not responsible for them. The security audit analysis and other contents of this report are based

on the documents and materials provided to SlowMist by the information provider till the date of the insurance

report (referred to as "provided information"). SlowMist assumes: The information provided is not missing,

tampered with, deleted or concealed. If the information provided is missing, tampered with, deleted, concealed,

or inconsistent with the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting

therefrom. SlowMist only conducts the agreed security audit on the security situation of the project and issues

this report. SlowMist is not responsible for the background and other conditions of the project.

