

Table Of Contents

1 Executive Summary

2 Audit Methodology

3 Project Overview

3.1 Project Introduction

3.2 Vulnerability Information

3.3 Vulnerability Summary

4 Audit Result

5 Statement

1 Executive Summary

On 2023.05.16, the SlowMist security team received the OKX team's security audit application for OKX MPC

Wallet(Android), developed the audit plan according to the agreement of both parties and the characteristics of

the project, and finally issued the security audit report.

The SlowMist security team adopts the strategy of "black/grey box lead, white box assists" to conduct a complete

security test on the project in the way closest to the real attack.

The test method information:

Test method Description

Black box testing Conduct security tests from an attacker's perspective externally.

Grey box testing
Conduct security testing on code modules through the scripting tool, observing the

internal running status, mining weaknesses.

White box

testing

Based on the open source code, non-open source code, to detect whether there are

vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level Description

Critical
Critical severity vulnerabilities will have a significant impact on the security of the

project, and it is strongly recommended to fix the critical vulnerabilities.

High
High severity vulnerabilities will affect the normal operation of the project. It is strongly

recommended to fix high-risk vulnerabilities.

Medium
Medium severity vulnerability will affect the operation of the project. It is

recommended to fix medium-risk vulnerabilities.

Low

Low severity vulnerabilities may affect the operation of the project in certain scenarios.

It is suggested that the project team should evaluate and consider whether these

vulnerabilities need to be fixed.

Weakness
There are safety risks theoretically, but it is extremely difficult to reproduce in

engineering.

Suggestion There are better practices for coding or architecture.

2 Audit Methodology

The security audit process of SlowMist security team for wallet application includes two steps:

The codes are scanned/tested for commonly known and more specific vulnerabilities using automated analysis

tools.

Manual audit of the codes for security issues. The wallet application is manually analyzed to look for any

potential issues.

The following is a list of security audit items considered during an audit:

NO. Audit Items Result

1 App runtime environment detection Passed

2 Code decompilation detection Some Risks

3 App permissions detection Some Risks

4 File storage security audit Passed

5 Communication encryption security audit Passed

6 Interface security audit Passed

7 Business security audit Passed

8 WebKit security audit Passed

9 App cache security audit Passed

10 WebView DOM security audit Passed

11 SQLite storage security audit Passed

12 Deeplinks security audit Passed

13 Client-Based Authentication Security audit Passed

14 Signature security audit Passed

15 Deposit/Transfer security audit Passed

NO. Audit Items Result

16 Transaction broadcast security audit Passed

17 Secret key generation security audit Passed

18 Secret key storage security audit Some Risks

19 Secret key usage security audit Passed

20 Secret key backup security audit Some Risks

21 Secret key destruction security audit Passed

22 Screenshot/screen recording detection Some Risks

23 Paste copy detection Passed

24 Keyboard keystroke cache detection Some Risks

25 Insecure entropy source audit Passed

26 Background obfuscation detection Passed

27 Suspend evoke security audit Some Risks

28 AML anti-money laundering security policy detection Passed

29 Others Passed

30 User interaction security Some Risks

3 Project Overview

3.1 Project Introduction

Audit Version

App Name: okx-android.apk

App Link:https://static.febjify.cn/upgradeapp/okx-android.apk

App Version: 6.14.0

Sha256: 5f3c3ea7eba6c5d69fca01e2fb207bec06c74d32e98beb3f104956a1c0bf5618

3.2 Vulnerability Information

The following is the status of the vulnerabilities found in this audit:

NO Title Category Level Status

N1
Code decompilation

issue

Code

decompilation

detection

Low Confirmed

N2 Access control issue
App permissions

detection
Suggestion Confirmed

N3
Suspend and invoke

security issue

Suspend evoke

security audit
Suggestion Confirmed

N4

Missing

screenshot/screen

recording detection

Screenshot/screen

recording detection
Suggestion Confirmed

N5
Built-in security

keyboard not used

Keyboard

keystroke cache

detection

Suggestion Confirmed

N6
User interaction

security suggestions

User interaction

security
Suggestion Confirmed

N7
Secret key storage

security issue

Secret key storage

security audit
Suggestion Confirmed

N8
Secret key storage

security issue

Secret key storage

security audit
Suggestion Confirmed

N9

The signature

information display

is incomplete

User interaction

security
Suggestion Confirmed

N10

Insufficient backup

and recovery

authentication

Secret key backup

security audit
Suggestion Confirmed

3.3 Vulnerability Summary

[N1] [Low] Code decompilation issue

Category: Code decompilation detection

Content

The unobfuscated code can be seen by decompiling.

Solution

Use code obfuscation techniques: Code obfuscation can convert critical information, variables, and

function names in the application code into meaningless characters, thereby increasing the difficulty of

decompiling the application.

1.

Encrypt sensitive data: For sensitive information and data, encryption techniques can be used to

protect them, thereby increasing the difficulty for attackers to obtain the information.

2.

Use anti-debugging techniques: The application can use anti-debugging techniques to prevent

attackers from using debuggers to decompile and analyze it. For example, open-source tools or custom

code can be used for anti-debugging.

3.

Status

Confirmed

[N2] [Suggestion] Access control issue

Category: App permissions detection

Content

The app obtains many permissions, some of which are relatively dangerous, and the project party needs to

confirm whether these permissions are required by the business.

Use digital signatures and certificates: Digital signatures and certificates can be used to verify the

authenticity of the application and prevent attackers from decompiling and analyzing it by tampering

with it.

4.

Protect sensitive code and critical algorithms: Hardware protection, secure storage, and encryption

techniques can be used to protect sensitive code and critical algorithms, thereby increasing the

difficulty for attackers to obtain information.

5.

Solution

It is recommended to remove unnecessary permission acquisition.

Status

Confirmed

[N3] [Suggestion] Suspend and invoke security issue

Category: Suspend evoke security audit

Content

Solution

It is recommended to re-awaken the App after a period of suspension in the background to verify the password.

Status

Confirmed; 1. It is recommended to automatically log out when the wallet has not been operated for a long time,

and to wake up again requires verification of the password.

2. It is recommended to verify the password when the wallet wakes up again from the background.

[N4] [Suggestion] Missing screenshot/screen recording detection

Category: Screenshot/screen recording detection

Content

The app has a reminder that screenshots are prohibited, but it does not restrict users from taking screenshots

and missing screenshot detection and restrictions.

No timeout mechanism was found in the wallet app, and the test was suspended for quite a while

without re-verification of the password.

1.

After the background is suspended, you can continue to use it without verifying the wallet password.2.

Solution

It is recommended to add screenshot/screen recording detection and prohibit screenshot/screen recording.

Status

Confirmed

[N5] [Suggestion] Built-in security keyboard not used

Category: Keyboard keystroke cache detection

Content

The wallet app does not have a built-in secure keyboard, allowing the use of third-party keyboards. If the user

uses an unsafe third-party keyboard mnemonic and other important information may be collected by the third-

party keyboard, resulting in information leakage.

Solution

The third-party input method will collect the input content of the user, so it may lead to the leakage of the

mnemonic phrase. It is recommended to use a secure keyboard.

Status

Confirmed

[N6] [Suggestion] User interaction security suggestions

Category: User interaction security

Content

Functionality Support Notes

WYSIWYS ● There is no friendly parsing of the data.

AML ✗ AML strategy is not supported.

Anti-phishing ✗ Phishing detect warning is not supported.

Pre-execution ✗ Pre-execution result display is not supported.

Contact whitelisting ✗
The contact whitelisting is not supported, causing

similar address attacks.

Password complexity

requirements
✗ There are no password complexity requirements.

Tip: ✓ Full support, ● Partial support, ✗ No support

Solution

It is recommended to add AML, Anti-phishing, Pre-execution and contact whitelisting functions to the

application, and password complexity constraints need to be made. It is recommended to remind users to

double-check the accuracy of the transfer destination address when it is not in their address book.

Status

Confirmed

[N7] [Suggestion] Secret key storage security issue

https://en.wikipedia.org/wiki/WYSIWYS

Category: Secret key storage security audit

Content

The wallet mnemonic, private keys, and MPC private key shard information are stored using AES encryption.

However, AES encryption algorithm is not the optimal solution as it may be vulnerable to brute-force

enumeration.

+ (OKWBridgeResult<NSString *> *)encodeData:(NSString *)pwd pwdHash:(NSString

*)pwdHash data:(NSString *)data {

 return [self dispatch:@"encrypt_data" data:@{@"passWord": pwd ? : @"",

@"passWordHash": pwdHash ? : @"", @"data": data ? : @""}];

}

func EncryptData(pass, hash, data string) (string, int) {

if !ValidatePass(pass, hash) {

return "", storage.PASS_ERROR

}

aesPass := getAesPass(pass, hash)

d, err := crypto.Encrypt([]byte(data), aesPass)

if err != nil {

return "", storage.DATA_ERROR

}

return d, storage.SUCCESS

}

func Encrypt(rawData, key []byte) (string, error) {

data, err := AesCBCEncrypt(rawData, key)

if err != nil {

return "", err

}

return base64.StdEncoding.EncodeToString(data), nil

}

Solution

It is recommended to use RSA encryption algorithm for secure storage.

MPC-iOS/OKWalletCore/Bridge/OKWBridge.m#line215-217

wallet-core/core/core.go#line36-46

wallet-core/thirdparty/crypto/aes.go#line82-88

Status

Confirmed

[N8] [Suggestion] Secret key storage security issue

Category: Secret key storage security audit

Content

The getAesPass function invokes MoreHash with an input parameter of 1, indicating the intention to perform

multiple hash calculations. However, it seems that the number of calculations in this context is insufficient.

func getAesPass(pass string, hash string) []byte {

h, _ := getHash(pass, hash)

hb := MoreHash(1, []byte(pass), sha3.NewKeccak256())

aesPass, _ := hex.DecodeString(h)

copy(aesPass[:8], hb[:8])

copy(aesPass[len(aesPass)-8:], hb[len(hb)-8:])

return aesPass

}

func MoreHash(count int, value []byte, h hash.Hash) []byte {

for i := 0; i < count; i++ {

h.Reset()

h.Write(value)

value = h.Sum(nil)

}

return value[:32]

}

Solution

It is recommended to have an adequate number of iterations for hash computations.

Status

Confirmed

[N9] [Suggestion] The signature information display is incomplete

wallet-core/core/core.go#line71-78

wallet-core/core/core.go#line96-103

Category: User interaction security

Content

Signed via Wallet Connect, full, readable signature information not shown.

Solution

It is recommended to display complete and readable signature information when signing.

Status

Confirmed

[N10] [Suggestion] Insufficient backup and recovery authentication

Category: Secret key backup security audit

Content

When a user loses their old device and attempts to recover their MPC wallet account on a new device, the

current authentication relies on OKX exchange account verification and cloud-based account authentication.

However, this method cannot guarantee that the recovery process is performed by the wallet owner themselves.

Solution

It is recommended to incorporate biometric authentication, such as facial recognition, to ensure that the

recovery is done by the wallet creator.

Status

Confirmed

4 Audit Result

Audit Number Audit Team Audit Date Audit Result

0X002306060002 SlowMist Security Team 2023.05.16 - 2023.06.06 Low Risk

Summary conclusion: The SlowMist security team use a manual and SlowMist team's analysis tool to audit the

project, during the audit work we found 9 suggestions and 1 low risk. All the findings have been confirmed.

5 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this

report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this

project, and is not responsible for them. The security audit analysis and other contents of this report are based

on the documents and materials provided to SlowMist by the information provider till the date of the insurance

report (referred to as "provided information"). SlowMist assumes: The information provided is not missing,

tampered with, deleted or concealed. If the information provided is missing, tampered with, deleted, concealed,

or inconsistent with the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting

therefrom. SlowMist only conducts the agreed security audit on the security situation of the project and issues

this report. SlowMist is not responsible for the background and other conditions of the project.

