
Security Assessment

OKX (Threshold-lib)
CertiK Assessed on Oct 11th, 2023

Executive Summary

Vulnerability Summary

1 Critical 1 Resolved

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

0 Major
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

6 Medium 6 Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

8 Minor 5 Resolved, 3 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

8 Informational 4 Resolved, 3 Acknowledged, 1 Declined

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY OKX (THRESHOLD-LIB)

CertiK Assessed on Oct 11th, 2023

OKX (Threshold-lib)

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

Exchange

ECOSYSTEM

OKX | Threshold-lib

METHODS

Manual Review, Static Analysis

LANGUAGE

Golang

TIMELINE

Delivered on 10/11/2023

KEY COMPONENTS

N/A

CODEBASE
ece01172905fed0e7b5f5f6247e757ed6da1273e

View All in Codebase Page

COMMITS
ece01172905fed0e7b5f5f6247e757ed6da1273e

View All in Codebase Page

23
Total Findings

16
Resolved

0
Mitigated

0
Partially Resolved

6
Acknowledged

1
Declined

https://github.com/okx/threshold-lib/tree/ece01172905fed0e7b5f5f6247e757ed6da1273e
https://github.com/okx/threshold-lib/tree/ece01172905fed0e7b5f5f6247e757ed6da1273e

TABLE OF CONTENTS OKX (THRESHOLD-LIB)

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Review Notes

Audit Phases

Audit Comments

Scopes and Limitations

Conclusion

Findings

GLOBAL-02 : CVE-2023-33242 Lindell17 Abort Vulnerability

ALI-01 : Missing Proof of Correct Paillier Encryption

CUV-01 : Potential Panic Caused by Nonexistent Curve

DLN-01 : Reduced Iterations in the DLNProof Algorithm

ECE-01 : Inappropriate Channel Closure

ECE-02 : Possible Go Routine Leakage

KET-01 : Incorrect Loop Termination on Public Share Map Calculation

DLN-02 : Missing Preliminary Validation in DLNProof Algorithm Verification Function

PAR-01 : Missing Validation on Message Encoding

POL-01 : Missing Error Check and Boundary Check in Function `InitPolynomial`

SCN-01 : Discrepancy Between Implementation and Specification in Schnorr Proof Algorithm

SIG-01 : Missing Round Enforcement in ECDSA Contexts

TSK-01 : Mismatch on Chaincode Usage in BIP-32 Key Derivation

TSK-02 : Missing Validation on Child Key Pair Calculation

TSK-03 : Missing Hardened Key Derivation Implementation

COI-01 : Non Timing-Constant Int Value Comparison

COR-01 : Outdated Reference Paper for Pailler Correctness Proof

CRY-03 : Inconsistent Random Number Error Handling

ECE-03 : Dependency Import Order Format

TABLE OF CONTENTS OKX (THRESHOLD-LIB)

GOE-01 : Potential Vulnerable Runtime Version

KET-02 : Panic Used Instead of Error Messages

PDL-01 : Invalid Reference Paper URL

RES-01 : Unnecessary Computation of Random Polynomial in non-Devotees

Optimizations

CRY-02 : Hard-coded Source of Randomness

UTL-01 : Unnecessary Memory Allocation

Appendix

Disclaimer

TABLE OF CONTENTS OKX (THRESHOLD-LIB)

CODEBASE OKX (THRESHOLD-LIB)

Repository

ece01172905fed0e7b5f5f6247e757ed6da1273e

Commit

ece01172905fed0e7b5f5f6247e757ed6da1273e

CODEBASE OKX (THRESHOLD-LIB)

https://github.com/okx/threshold-lib/tree/ece01172905fed0e7b5f5f6247e757ed6da1273e
https://github.com/okx/threshold-lib/tree/ece01172905fed0e7b5f5f6247e757ed6da1273e

AUDIT SCOPE OKX (THRESHOLD-LIB)

31 files audited 2 files with Declined findings 11 files with Acknowledged findings 14 files with Resolved findings

4 files without findings

ID Repo Commit File SHA256 Checksum

DKR
okx/threshold-

lib
ece0117 tss/key/dkg/dkg_round.go

45575b8cefcf4e8d11183e74e572930f35e

790297743c84fa5ddc0caad36ec84

UPD
okx/threshold-

lib
ece0117

tss/key/reshare/update_round.g

o

02c1f08a77ae5811ac43dd39b0cad8d05d

5b972975a7234463eabf4d0c76bd14

COI
okx/threshold-

lib
ece0117

crypto/commitment/commitment.

go

247e80f7e369af99fe7139482aaa177b5ee

7582fcb591181a2fdbb2d706d6945

PAL
okx/threshold-

lib
ece0117 crypto/paillier/paillier.go

662484576f01881166bf292f5b6161cfa08

ab511c36464cbd4e8b0278a361859

SCN
okx/threshold-

lib
ece0117 crypto/schnorr/schnorr_proof.go

2e0ce7f3cfc575a4411f5448a44bda3edc4

c403dbc028dbae3f8306fdd8f4c82

UTI
okx/threshold-

lib
ece0117 crypto/utils.go

9798aa7d9f168eaf7d3119d64df52320fe3

597a3a6234ce6c6ca4ea66b5829dc

PAR
okx/threshold-

lib
ece0117 tss/ecdsa/sign/party1.go

9f744042e35a945e195acfb3b731a6d593

16e765ed564dd62460f9c6ce5c305e

PAT
okx/threshold-

lib
ece0117 tss/ecdsa/sign/party2.go

12283901009072debf6bbf92dc1cc5273af

3133db2053a12e5fd02fdb2e6ee49

UTL
okx/threshold-

lib
ece0117 tss/ed25519/sign/utils.go

36b6b9e5f2db2378609e6df0638e32a30c

5e89bc07423a14bd04ecf9c48bca75

TSK
okx/threshold-

lib
ece0117 tss/key/bip32/tsskey.go

d576b1fead7ee5319ce24ee62fe74e4ffde

0a42bb01c1c4d881657414d5fbb97

UPA
okx/threshold-

lib
ece0117

tss/key/reshare/update_round1.

go

bdd119e200526ac4d9a456202e20046e6

4fd318bb49eab07bff8d9669e8bc027

UPT
okx/threshold-

lib
ece0117

tss/key/reshare/update_round2.

go

10b9c2ab734a13b63207094a2dcba185b

85b92e1f8f0be9a28290bbb3c2979d9

AUDIT SCOPE OKX (THRESHOLD-LIB)

ID Repo Commit File SHA256 Checksum

GOE
okx/threshold-

lib
ece0117 go.mod

ded98cbba29a1a212b63cc80568ae7bcf5

adde0be70a1622837d1ccc384451eb

CUV
okx/threshold-

lib
ece0117 crypto/curves/curve.go

3a954a6794621bed807970aadb6f9d1e1e

415d3f408b398164d8589fdcc3412a

COR
okx/threshold-

lib
ece0117 crypto/paillier/correct_key_ni.go

9de5ffaca7702d6a09ecdcdea29eee7ecee

862b8831c538c6f813c22a8f72c6d

FEL
okx/threshold-

lib
ece0117 crypto/vss/feldman.go

198301ac8bdc01b2e94d4982cac130b5cf

dc07bb880bf23ae35689275ce2f627

POL
okx/threshold-

lib
ece0117 crypto/vss/polynomial.go

fe8c9d4631ff6ae87864ce8fe8fd281f809d

c1bea06b4e00e5090a8a6d167f02

DLN
okx/threshold-

lib
ece0117 crypto/zkp/dlnproof.go

503e15158382fdbf21cb02404a89c4fc062

28e7f9790a65125d339e5c4679514

PDL
okx/threshold-

lib
ece0117 crypto/zkp/pdl_w_slack_proof.go

54a0142afbf9792c6623bddbbb22a7e357

11e761e472db1b4b92914c3e5db599

ALI
okx/threshold-

lib
ece0117 tss/ecdsa/keygen/alice.go

8fe2f2f70697d80785187096c280b43a958

5a46ee27243eb52bf6dd4fc0454a6

BOB
okx/threshold-

lib
ece0117 tss/ecdsa/keygen/bob.go

735807d6de52318aacc8b02cd3fdcc467a

42c4408da187c5e123ef416f24b5ea

ED5
okx/threshold-

lib
ece0117 tss/ed25519/sign/ed25519.go

01d7ef94bb1e6f1a1084568acb52e77bfd9

b57f14ca3139fd887ebc50e49ed79

ROD
okx/threshold-

lib
ece0117 tss/ed25519/sign/round3.go

65ba0756a4b5ce149c3d46180ec9a19ffd

71b2dca739063a27aea7805543ab92

DKO
okx/threshold-

lib
ece0117 tss/key/dkg/dkg_round1.go

4ec820b3b4fc96c64b633827a895abe277

e2a53bf364c1a8ee47076f23159c71

DKN
okx/threshold-

lib
ece0117 tss/key/dkg/dkg_round3.go

310335d520cfe72f7921812eebc9962d05

8ae7fb92467d36307c4db03b63af78

UPE
okx/threshold-

lib
ece0117

tss/key/reshare/update_round3.

go

4d8a8c748315225589f600fb38413b02e4

d4eddfb375f90a7a801944dc045658

COO
okx/threshold-

lib
ece0117 tss/common.go

56bda0dc78dc34f7ffd715c26f354b0d907

5cf76964e80f2078494a06e09bf79

AUDIT SCOPE OKX (THRESHOLD-LIB)

ID Repo Commit File SHA256 Checksum

ECP
okx/threshold-

lib
ece0117 crypto/curves/ecpoint.go

396d9e02f9c7328093a103534926628a2f

a7482658026f6e361af6d61e233100

ROU
okx/threshold-

lib
ece0117 tss/ed25519/sign/round1.go

c5a22a9fc595023757e14d3a8ec036315d

c88ff350868cac710dacd16e69a040

RON
okx/threshold-

lib
ece0117 tss/ed25519/sign/round2.go

0525b1addfc413a4d6cb03ccdcd08df11ab

67c17998450c39a9af18e5cac4337

DKU
okx/threshold-

lib
ece0117 tss/key/dkg/dkg_round2.go

0f5ef8ef61ee5769dd224b003b42db48611

32b4b0aa7dc062519ae9f8c30c19e

AUDIT SCOPE OKX (THRESHOLD-LIB)

APPROACH & METHODS OKX (THRESHOLD-LIB)

This report has been prepared for OKX to discover issues and vulnerabilities in the source code of the OKX (Threshold-lib)

project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Manual Review and Static Analysis techniques.

Audit Approach

The audit process was comprehensive, focusing on both the security and functional aspects of the threshold signature crypto

library. The library was evaluated for adherence to industry standards and practices, and for alignment with the specifications

and intentions of the client. The audit was conducted in the following stages:

Specification and Literature Review: A thorough review of the library specifications and any related literature was

conducted. This provided a clear understanding of the intended behavior of the library and set a benchmark for the

subsequent review.

Functional Review: A detailed review of the functional matching between the code and the specified intended

behavior was carried out. This involved a line-by-line manual review of the entire codebase by industry experts to

ensure that the library functioned as intended.

Cryptographic Primitives Assessment: The cryptographic primitives used in the library were assessed. This involved

checking the security of the cryptographic algorithms and implementations in respect to their reference specification

papers.

Software Security Code Review: A software security code review was conducted to identify any potential

vulnerabilities. This involved testing the library against both common and uncommon attack vectors.

Codebase Best Practices Assessment: The codebase was assessed for compliance with current best practices and

industry standards. This involved cross-referencing the library structure and implementation against similar libraries

produced by industry leaders.

Documentation Review: The comments and documentation provided in the codebase were also reviewed for

readability and understanding.

Audit Methodology

The audit was conducted in a static manner, focusing on the source code of the library. No dynamic analysis was performed

on the codebase. Here's a detailed breakdown of the methodology:

Manual Code Review: Industry experts conducted a thorough line-by-line manual review of the entire codebase. This

helped identify any potential issues or vulnerabilities in the code.

Automated Static Analysis: Automated static analysis tools were used to identify common coding errors and

vulnerabilities. This supplemented the manual code review.

Unit Testing: The existing unit tests were reviewed and additional tests were suggested to cover possible use cases.

This helped ensure the robustness of the library.

APPROACH & METHODS OKX (THRESHOLD-LIB)

Documentation Review: The comments and documentation provided in the codebase were reviewed. Improvements

were suggested to enhance readability and understanding, especially for contracts that were verified in public.

Comparison with Industry Standards: The library structure and implementation were cross-referenced against similar

libraries produced by industry leaders. This ensured that the library adhered to industry standards.

Security Assessment: A security assessment of the library was conducted, identifying findings that ranged from

critical to informational. Recommendations were provided to address these findings and enhance the security of the

library.

The primary goal of this audit was to evaluate the overall robustness of the threshold signature crypto library against a range

of potential real-world attacks targeting the library's controls and functions. By identifying any weaknesses, we aimed to

provide recommendations to address these vulnerabilities and enhance the library's overall security posture. The audit was

particularly focused on the library's use of cryptographic primitives, its handling of potentially untrusted inputs, and its

adherence to the protocol specifications. The findings of the audit offer valuable insights that can guide the ongoing

development and refinement of the library, ensuring it remains a reliable and secure tool for web3 use cases.

Three members of our audit team were involved in this engagement, which spanned over the course of 15 days in June

2023 and resulted in 25 security-relevant findings. The most significant findings, while of medium severity, highlight areas for

improvement in the following categories:

Loop Control and Termination: There were issues with the termination of loops in the Public Share Map Calculation,

which could potentially lead to inefficiencies or errors in the execution of the program.

Resource Management: Inappropriate closure of channels was observed, which could lead to resource leakage or

unexpected behavior in concurrent operations.

Error Handling: There were instances where nonexistent curves could potentially cause the program to panic,

indicating a need for better error handling and validation of inputs.

Cryptographic Protocol Adherence: The library was found to be missing a proof of correct Paillier encryption, which is

crucial for ensuring the integrity and security of the cryptographic operations. The DLNProof Algorithm was found to

have reduced iterations, which could potentially impact the security and effectiveness of the cryptographic processes.

These findings highlight areas where the threshold signature crypto library could be improved to enhance its overall security

posture. While none of these issues are critical, they could potentially impact the library's robustness and reliability if not

addressed.

Other weaknesses were also identified and are detailed in the Findings section of the report. We recommend addressing

these findings to ensure a high level of security standards and industry practices, and to enhance the overall security posture

of the threshold signature crypto library. Our team is confident that by addressing these issues, the library will continue to

serve as a reliable and secure tool for web3 use cases.

APPROACH & METHODS OKX (THRESHOLD-LIB)

REVIEW NOTES OKX (THRESHOLD-LIB)

The threshold signature crypto library, developed by OKX and open-sourced on GitHub, implements algorithms for Multi-

Party Computation aimed at 2 out of n key-pair management trying to balance signing efficiency while meeting the business

requirements of web3 use cases.

The library uses Feldman's Verifiable Secret Sharing scheme (Feldman's VSS) for the distributed key generation problem

and relies on the Lindell '17 protocol to effectively compute ECDSA signatures using the previously generate private local

shares. EdDSA is supported exploiting the additive properties of the signature scheme and new key-pairs can be derived

through the support to the BIP-32 non-hardened key derivation. Finally a re-share algorithm is provided to allow local key

share refresh in the case new participants join the signing group.

Significantly, the library has incorporated implementations from Binance and ZenGo's threshold crypto libraries. This

adoption of tested and proven code from reputable sources in the industry adds to the reliability and robustness of the library.

However, it is crucial to ensure that these implementations are correctly integrated and that they align with the overall design

and functionality of the OKX library.

Audit Phases

The audit was structured into three distinct phases:

Go Safety Programming Review: The code was scrutinized for potential software defects, with a particular

emphasis on how it handles untrusted inputs. The review specifically focused on Go safety programming, including

the handling of nil pointers, error handling, data races, and memory leaks. Attention was also given to the use of

third-party packages, as they can introduce vulnerabilities if not properly vetted. The review also examined the code

for susceptibility to known vulnerabilities, unsafe behavior, leakage of secrets or sensitive data, susceptibility to

misuse and system errors, and safety against malformed or malicious input from other network participants.

Cryptography Analysis: The cryptographic primitives and protocols employed were thoroughly analyzed. This

included a detailed examination of randomness and hash generation, signatures, key management, zero-knowledge

proofs, and encryption. The review ensured that the cryptographic primitives were appropriately matched to the

required cryptographic functionality, and that they maintained a high security level.

Protocol Specification Matching: The audit team analyzed the original paper and cross-checked the code to

ensure it aligns with the given specification. This involved checking the correct implementation of protocol phases,

error handling, zero-knowledge proofs, and adherence to the protocol's logical description.

Audit Comments

The audit also resulted in the following comments:

1. The library operates under an optimistic assumption that all interacting parties will behave correctly. This means that

the library's algorithms are designed with the expectation that all parties involved in a transaction or operation will

REVIEW NOTES OKX (THRESHOLD-LIB)

https://ieeexplore.ieee.org/document/4568297
https://eprint.iacr.org/2017/552
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

follow the prescribed rules and protocols. This approach has the advantage of speeding up the execution of

algorithms, as it reduces the number of messages that need to be exchanged between parties. However, this

optimistic assumption also has potential drawbacks. If a party does not behave correctly - for example, if they provide

incorrect or malicious input - the protocol may proceed to its conclusion before the error is detected. This could result

in an unusable outcome, such as a failed transaction or an incorrect computation, after computational resources

have already been expended. Therefore, while the optimistic assumption can improve efficiency, it also underscores

the importance of robust error detection and handling mechanisms within the library.

2. The library's re-share protocol allows for generating a new set of shares for a new set of participants in relation to the

same global key-pair. This feature can be useful when new actors need to be added to the participants. However, it's

important to note that once a re-share is completed, the old set of shares remains valid. This means that the original

participants still have access to the shared key, which could pose a security risk if those original participants are no

longer trusted or if they have had their shares compromised. Therefore, the re-share protocol should be used with

caution. If the goal is to remove an entity from the set of participants, simply resharing the key would not be sufficient

to prevent the removed entity from accessing the shared key. In such cases, a brand new key-pair must be

generated with the new set of trusted participants. This ensures that removed or compromised participants no longer

have access to the shared key.

3. The ECDSA signing protocol based on Lindell 17 uses a range zero-knowledge proof complemented with a Discrete

Logarithm proof regarding the parameters of the range proof. However, no reference was provided about this second

proof, so the audit team could not cross-check in the cryptography literature the theory and security assumptions

behind this implementation decision.

4. The audit of the threshold signature crypto library revealed that the current test suite primarily focuses on verifying

the successful execution of the different cryptographic primitives and protocols. While this is crucial for validating the

library's functionality under ideal conditions, it does not fully account for real-world scenarios where the library might

be used incorrectly or misused. Misuse can occur due to user error, misunderstanding of the library's functions, or

even malicious attempts to exploit potential vulnerabilities. The absence of tests simulating misuse or incorrect usage

means the library might not be fully equipped to handle these scenarios, potentially leading to unexpected behavior

or exploitable vulnerabilities. It is recommended to expand the test suite to cover potential misuse or incorrect usage

scenarios. This would help ensure the library's robustness and security across a wider range of scenarios and use

cases.

Scopes and Limitations

The audit of the threshold signature crypto library was conducted with a focus on the library's implementation of a secure t/n

ECDSA/EdDSA signature scheme. It's important to note that while the library provides the tools for secure multi-party

computation, the overall security of a solution built using the library heavily relies on proper usage practices by the library

users.

In a 2/3 scheme, for instance, the full private key can be reconstructed if two parties have their key shares leaked. Therefore,

library users must ensure the safe storage and handling of their key shares to prevent such leaks. When using the re-share

protocol, library users must not only generate a new set of shares but also properly invalidate and erase the old shares. If the

old shares remain valid and fall into the wrong hands, the security of the system could be compromised.

REVIEW NOTES OKX (THRESHOLD-LIB)

Additionally, the threshold library does not serve as an access policy component. If one party's key share is leaked and the

other party continues to perform the signature process without question, the security benefits of having multiple shares are

negated. Therefore, library users should implement additional checks and balances to ensure that all parties are behaving

correctly and that key shares have not been compromised.

Furthermore, the audit does not guarantee that the library will be free of issues if misused. Misuse can occur in various ways,

such as not using the correct parameters or curves, not following the correct order of API calls, or not implementing the

correct usage scenario and access policy. These factors can significantly impact the security of the system and are beyond

the scope of the library itself.

In essence, while the library provides a set of tools for secure multi-party computation, library users must also follow best

practices in key management and access control to maintain the security of the system. The audit's scope was limited to the

library itself, and it is the responsibility of the library users to ensure the library is used correctly and securely in their specific

applications.

Conclusion

While the audit revealed the high-risk Lindell17 Abort Vulnerability (CVE-2023-33242), the client promptly addressed it. The

client introduced a ban list design in commit: de1431b2c9b6d601e0bf7e3566537c3d22e9eb8b, where failed ECDSA

requests result in a permanent ban, efficiently mitigating the risk albeit with a potential Denial of Service on the user side.

Further improvement was made by adopting a zero knowledge proof approach in pull request:

c191c162d2f7cd52f9ce6eb5b945d3cd5f21be68. Leveraging the Paillier affine operation with group commitment in range zk

proof, Paillier Blum modulus zk proof and No Small Factor zk proof from CGGMP21, the last message is now proofed and

verified. Any failed zero knowledge proof results in early termination to prevent signature result leak. This approach, used in

conjunction with the ban list, introduces a more robust defense mechanism.

The auditors also would like to take a note that the library heavily relies on existing cryptographic primitives. This approach

has both advantages and potential drawbacks. On the positive side, using established cryptographic primitives reduces the

risk of introducing new vulnerabilities. However, it also suggests a need for a deeper understanding of the underlying

cryptographic principles to ensure that these primitives are being used correctly and optimally, which is partially reflected in

the CVE-2023-33242 scenario.

The audit has identified areas for improvement, particularly in loop control and termination, resource management, error

handling, and adherence to cryptographic protocols. Addressing these areas could enhance the library's robustness and

reliability in all its implemented functionalities.

Finally, although the adoption of implementations from Binance and ZenGo's threshold crypto libraries builds on top of robust

packages, it is recommended to provide more references and documentation. In particular, the Discrete Logarithm proof

used in the ECDSA signing protocol should be complemented with reference documentation and security proofs, while in

general, a deeper understanding of the cryptographic principles underlying the used primitives could further enhance the

library's security and efficiency. It's also important to note that the security landscape is constantly evolving, and regular

audits are recommended to ensure that the library continues to meet the necessary security standards and industry

practices.

REVIEW NOTES OKX (THRESHOLD-LIB)

FINDINGS OKX (THRESHOLD-LIB)

This report has been prepared to discover issues and vulnerabilities for OKX (Threshold-lib). Through this audit, we have

uncovered 23 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

GLOBAL-02
CVE-2023-33242 Lindell17 Abort

Vulnerability

Private Key

Leakage
Critical Resolved

ALI-01
Missing Proof Of Correct Paillier

Encryption
Inconsistency Medium Resolved

CUV-01
Potential Panic Caused By Nonexistent

Curve
Coding Issue Medium Resolved

DLN-01
Reduced Iterations In The DLNProof

Algorithm
Volatile Code Medium Resolved

ECE-01 Inappropriate Channel Closure Coding Issue Medium Resolved

ECE-02 Possible Go Routine Leakage Coding Issue Medium Resolved

KET-01
Incorrect Loop Termination On Public

Share Map Calculation
Logical Issue Medium Resolved

DLN-02
Missing Preliminary Validation In

DLNProof Algorithm Verification Function
Inconsistency Minor Resolved

PAR-01 Missing Validation On Message Encoding
Incorrect

Calculation
Minor Resolved

POL-01
Missing Error Check And Boundary

Check In Function InitPolynomial
Coding Issue Minor Resolved

FINDINGS OKX (THRESHOLD-LIB)

23
Total Findings

1
Critical

0
Major

6
Medium

8
Minor

8
Informational

ID Title Category Severity Status

SCN-01

Discrepancy Between Implementation

And Specification In Schnorr Proof

Algorithm

Coding Issue Minor Acknowledged

SIG-01
Missing Round Enforcement In ECDSA

Contexts
Volatile Code Minor Acknowledged

TSK-01
Mismatch On Chaincode Usage In BIP-

32 Key Derivation
Inconsistency Minor Acknowledged

TSK-02
Missing Validation On Child Key Pair

Calculation
Inconsistency Minor Resolved

TSK-03
Missing Hardened Key Derivation

Implementation
Inconsistency Minor Resolved

COI-01
Non Timing-Constant Int Value

Comparison

Language Design

Issue
Informational Acknowledged

COR-01
Outdated Reference Paper For Pailler

Correctness Proof
Inconsistency Informational Resolved

CRY-03
Inconsistent Random Number Error

Handling
Coding Style Informational Resolved

ECE-03 Dependency Import Order Format Coding Style Informational Resolved

GOE-01 Potential Vulnerable Runtime Version Language Version Informational Acknowledged

KET-02 Panic Used Instead Of Error Messages Coding Style Informational Declined

PDL-01 Invalid Reference Paper URL Invalid Reference Informational Resolved

RES-01
Unnecessary Computation Of Random

Polynomial In Non-Devotees
Coding Issue Informational Acknowledged

FINDINGS OKX (THRESHOLD-LIB)

GLOBAL-02 CVE-2023-33242 LINDELL17 ABORT VULNERABILITY

Category Severity Location Status

Private Key Leakage Critical Resolved

Description

The audited version of the library was found to be vulnerable to the Lindell17 Abort Vulnerability (CVE-2023-33242), where

an attacker could potentially extract the full private key from a wallet implementing the Lindell17 2PC protocol. This

vulnerability arises from deviations in the Lindell17 implementations from the specification of the academic paper, particularly

in handling aborts during failed signature attempts. It was discovered that an attacker, with privileged access, could exploit

this vulnerability to exfiltrate the key after approximately 200 malicious signature requests, thereby posing a severe security

risk to the affected systems and their users.

The root cause of the Lindell17 Abort Vulnerability stems from some implementations of the Lindell17 protocol mishandling or

ignoring aborts in cases of failed signatures. This oversight allows an attacker, assuming privileged access, to exploit this

flaw and extract a full private key by initiating malicious signature requests, posing a significant security threat to the affected

systems.

Vulnerability detail: https://www.fireblocks.com/blog/lindell17-abort-vulnerability-technical-report

Proof of Concept

Following the description provided in https://www.fireblocks.com/blog/lindell17-abort-vulnerability-technical-report. The

auditors performed a quick proof of concept verification on the audited code base. As shown in the screenshot, the attacker

can deduce the last bit of the party two's private key by checking if the signing process is successful. This can be extended to

extract all bits of the other party's key share.

Recommendation

As discussed in the vulnerability detail, there are several ways to address this issue. The developers can either introduce

blacklist mechanism to permanently ban the malicious user and corresponding key share. Another potential solution is to

GLOBAL-02 OKX (THRESHOLD-LIB)

https://www.fireblocks.com/blog/lindell17-abort-vulnerability-technical-report
https://www.fireblocks.com/blog/lindell17-abort-vulnerability-technical-report

introduce zero knowledge proof during the last message interaction stage.

Alleviation

The client has introduced the ban list design in commit: de1431b2c9b6d601e0bf7e3566537c3d22e9eb8b. The failed ecdsa

request will result in permanent ban. This approach is efficient yet might cause Denial of Service on user side. To further

improve the solution, a zero knowledge proof approach is also introduced in pull request:

c191c162d2f7cd52f9ce6eb5b945d3cd5f21be68. More specifically, leveraging the Paillier affine operation with group

commitment in range zk proof, Paillier Blum modulus zk proof and No Small Factor zk proof from CGGMP21, the last

message is now proofed and verified. Any failed zero knowledge proof will result in early termination to prevent signature

result leak. This approach will also be used in conjunction with the ban list approach to introduce more robust defense

mechanism.

GLOBAL-02 OKX (THRESHOLD-LIB)

https://github.com/okx/threshold-lib/commit/de1431b2c9b6d601e0bf7e3566537c3d22e9eb8b
https://github.com/Jason-LI2020/threshold-lib/commit/c191c162d2f7cd52f9ce6eb5b945d3cd5f21be68
https://eprint.iacr.org/2023/1234.pdf

ALI-01 MISSING PROOF OF CORRECT PAILLIER ENCRYPTION

Category Severity Location Status

Inconsistency Medium tss/ecdsa/keygen/alice.go: 83 Resolved

Description

The key generation sub-protocol in Lindell17 ends up with the two parties having the global public key, their local private key

share. Moreover, the entity playing party 2 also obtains a Paillier encryption of party 1 private share that will be necessary in

the signing sub-protocol.

In order to convince party 2 that the shared encryption actually is the chipertext corresponding to the local private share

behind the shared partial public key, party 1 also sends to party 2 a proof demonstrating such assertion. A method to

compute and verify such proof is reported in section 6 of Lindell17.

In the scenario implemented in the codebase in scope, parties generate key shares using a combination of multiple (one per

party) VSS sessions. Then, in order to run the Lindell protocols, the Paillier encryption of the local share is shared between

the signing actors (the value). However, no proof that such encryption is correct is shared by party 1, so party 2 can only

trust that the shared information is correct. In the case in which such encryption is not correct, party 1 can induce party 2

either in computing useless data or in participating in the calculation of a signature verifiable by a random key-pair that only

party 1 is aware of.

Recommendation

The auditors recommend implementing the proof generation and verification reported in section 6 of Lindell17 to verify that

the shared cipher-text is a valid encryption of the local private secret.

Alleviation

File pdl_w_slack_proof.go is used to introduce the proof action to validate the ciphertext/private share relationship. Note

that also this proof carries the range proof by design but the range proof verification step is skipped to avoid redundant range

proof action.

ALI-01 OKX (THRESHOLD-LIB)

c key

https://eprint.iacr.org/2017/552
https://eprint.iacr.org/2017/552
https://eprint.iacr.org/2017/552

CUV-01 POTENTIAL PANIC CAUSED BY NONEXISTENT CURVE

Category Severity Location Status

Coding Issue Medium crypto/curves/curve.go: 26~29 Resolved

Description

In the following code, the developers did not check if curve is existed in curve map. In Go programming language, the value

will be nil or 0 if key is not found in the map.

func GetCurveByName(curveName string) elliptic.Curve {

return curveMap[curveName]

}

This function is further used in the following code, which takes unsanitized JSON input and retrieve the curve by JSON

curve field.

func (p *ECPoint) UnmarshalJSON(payload []byte) error {

aux := &struct {

Curve string

X *big.Int

Y *big.Int

}{}

if err := json.Unmarshal(payload, &aux); err != nil {

return err

}

p.X = aux.X

p.Y = aux.Y

p.Curve = GetCurveByName(aux.Curve)

if !p.IsOnCurve() {

return fmt.Errorf("UnmarshalJSON error, point not on the curves ")

}

return nil

}

However, the code will panic (caused by null pointer dereference) if curve's name is not precisely secp256k1 or ed25519 .

Proof of Concept

CUV-01 OKX (THRESHOLD-LIB)

var test elliptic.Curve

test = GetCurveByName("test")

_ = test.IsOnCurve(big.NewInt(10), big.NewInt(10))

caused panic:

panic: runtime error: invalid memory address or nil pointer dereference

[signal SIGSEGV: segmentation violation code=0x1 addr=0x28 pc=0x4d8e5d]

goroutine 1 [running]:

main.main()

/tmp/sandbox1107371530/prog.go:37 +0xbd

Recommendation

Please use error code scheme when curve name is not found in pre-defined curve map.

Alleviation

Curve name is now checked against existence and error message is returned if curve not found.

See: https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/crypto/curves/curve.go#L26

CUV-01 OKX (THRESHOLD-LIB)

https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/crypto/curves/curve.go#L26

DLN-01 REDUCED ITERATIONS IN THE DLNPROOF ALGORITHM

Category Severity Location Status

Volatile Code Medium crypto/zkp/dlnproof.go: 19~20 Resolved

Description

The current DlnProof implementation is largely borrowed from Binance open source threshold signature library. The

corresponding code is located at https://github.com/bnb-chain/tss-lib/blob/master/crypto/dlnproof/proof.go.

However, the adapted code reduced the number of components of the proof from the original 128 to 12 . This reduction in

iterations weakens the security of the proof. In fact, the number of iterations in an interactive zk-proof (even though made

non-interactive with the Fiat-Shamir heuristic) directly impacts the probability that the proof correctly demonstrates its

assertion. A reduced number of iterations may make possible for an attacker to issue a proof which verifies as true while

the underlying fact to demonstrate is false .

While 12 iterations may speed up the computation, they do not represent a big enough value to trust the outcome of the

proof verification, thereby potentially compromising the security of the system.

Recommendation

The auditors recommend restoring the number of iterations to its original value of 128 to ensure the robustness of the DLN.

Alleviation

Client has increased the number of iterations into 30 and reaches the confidence > 99.9999999%.

See: https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/crypto/zkp/dln_proof.go#L14

DLN-01 OKX (THRESHOLD-LIB)

https://github.com/bnb-chain/tss-lib/blob/master/crypto/dlnproof/proof.go
https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/crypto/zkp/dln_proof.go#L14

ECE-01 INAPPROPRIATE CHANNEL CLOSURE

Category Severity Location Status

Coding Issue Medium crypto/paillier/paillier.go: 41~50; tss/ecdsa/keygen/alice.go: 30~40 Resolved

Description

In the mentioned code snippet, the developers use the go routine function crypto.GenerateSafePrime to generate two

safe prime numbers. The crypto.GenerateSafePrime function takes quit channel parameter as a control signal to

terminate the prime generation process.

Using code from paillier.go as an example:

var values = make(chan *big.Int)

var quit = make(chan int)

var p, q *big.Int

for p == q {

 for i := 0; i < currency; i++ {

 go crypto.GenerateSafePrime(PrimeBits/2, values, quit)

 }

 p, q = <-values, <-values

 close(quit)

}

The above code creates a channel quit before launching go routines. The for loop checks if generated two prime numbers

are the same. The loop continues if two same prime numbers are acquired. However, the channel quit is closed in every

iteration of the for loop, meaning if the loop continues then the repeated close action on the already closed quit channel

will cause unexpected panic .

Recommendation

Please consider remove unused control channel quit from crypto.GenerateSafePrime function. Alternatively, the

developers can use sync.Once to ensure a channel is only closed once.

Alleviation

The quit channel now has been moved into the for loop which addressed the raised issue.

See: https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/crypto/paillier/paillier.go#L44

https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/tss/ecdsa/keygen/party1.go#L36

ECE-01 OKX (THRESHOLD-LIB)

https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/crypto/paillier/paillier.go#L44
https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/tss/ecdsa/keygen/party1.go#L36

ECE-02 POSSIBLE GO ROUTINE LEAKAGE

Category Severity Location Status

Coding Issue Medium crypto/paillier/paillier.go: 41~50; tss/ecdsa/keygen/alice.go: 31~40 Resolved

Description

Using code from paillier.go as example:

var values = make(chan *big.Int)

var quit = make(chan int)

var p, q *big.Int

for p == q {

 for i := 0; i < currency; i++ {

 go crypto.GenerateSafePrime(PrimeBits/2, values, quit)

 }

 p, q = <-values, <-values

 close(quit)

}

This code launches currency number of go routines in each iteration of the loop, each running the GenerateSafePrime

function. However, only two values (i.e., p and q) are read from the values channel in each iteration. This means that if

currency is greater than 2, there will always be some go routines whose results are not read in each iteration. These go

routines will be blocked waiting for their results to be read, leading to a go routine leak. This leak can cause unnecessary

resource consumption and potential performance degradation in the program.

Recommendation

1. Limit the number of go routines: Since the developers are only interested in two values p and q per iteration, it would

be more efficient to only spawn two go routines per iteration. This way, it ensures that all go routines are able to send

their results to the values channel and no go routines are left hanging.

2. Use buffered channels: If the developers still want to run more than two go routines per iteration, consider using a

buffered channel. This allows a go routine to send its result to the channel and terminate, even if its result isn't

immediately read from the channel. For example, developers could create the channel like this: values :=

make(chan *big.Int, currency) . This creates a channel with a buffer size equal to currency, so up to currency

results can be sent to the channel without blocking.

Alleviation

ECE-02 OKX (THRESHOLD-LIB)

Client now uses buffered channel to receive generated safe prime number.

See:

1. https://github.com/okx/threshold-

lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/crypto/paillier/paillier.go#L41

2. https://github.com/okx/threshold-

lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/tss/ecdsa/keygen/party1.go#L33

ECE-02 OKX (THRESHOLD-LIB)

https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/crypto/paillier/paillier.go#L41
https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/tss/ecdsa/keygen/party1.go#L33

KET-01 INCORRECT LOOP TERMINATION ON PUBLIC SHARE MAP
CALCULATION

Category Severity Location Status

Logical

Issue
Medium

tss/key/dkg/dkg_round3.go: 92; tss/key/reshare/update_round3.go: 9

2
Resolved

Description

The for constructs at the pointed locations initializes the sharePubKeyMap map with the public keys obtained from the

secret shares commitments sent by the parties of the protocol. Such data are then used to verify the correctness of the

owned share.

The map initialization is stopped after iterations, where is the threshold to overcome to reconstruct the global shared

secret. However, can be greater than as the number of parties participating in the protocol is not related to . In this

way, when , the parties with ID higher than can not verify the correctness of their share and the DKG

protocol is interrupted.

The pointed locations refer to the correspondent steps the key generation and reshare, which both present the same

incorrect behavior.

Proof of Concept

The following test runs the DKG algorithm with a threshold of 2 among 4 parties, so . It panics in line 42 since the

final result for the 4th peer is not computed.

KET-01 OKX (THRESHOLD-LIB)

t + 1 t

n t + 1 t

n > t + 1 t + 1

n > t + 1

1 func TestKeyGen2_4(t *testing.T) {

2 curve := secp256k1.S256() // edwards.Edwards()

3 setUp1 := NewSetUp(1, 4, curve)

4 setUp2 := NewSetUp(2, 4, curve)

5 setUp3 := NewSetUp(3, 4, curve)

6 setUp4 := NewSetUp(4, 4, curve)

7

8 msgs1_1, _ := setUp1.DKGStep1()

9 msgs2_1, _ := setUp2.DKGStep1()

10 msgs3_1, _ := setUp3.DKGStep1()

11 msgs4_1, _ := setUp4.DKGStep1()

12

13 msgs1_2_in := []*tss.Message{msgs2_1[1], msgs3_1[1], msgs4_1[1]}

14 msgs2_2_in := []*tss.Message{msgs1_1[2], msgs3_1[2], msgs4_1[2]}

15 msgs3_2_in := []*tss.Message{msgs1_1[3], msgs2_1[3], msgs4_1[3]}

16 msgs4_2_in := []*tss.Message{msgs1_1[4], msgs2_1[4], msgs3_1[4]}

17

18 msgs1_2, _ := setUp1.DKGStep2(msgs1_2_in)

19 msgs2_2, _ := setUp2.DKGStep2(msgs2_2_in)

20 msgs3_2, _ := setUp3.DKGStep2(msgs3_2_in)

21 msgs4_2, _ := setUp4.DKGStep2(msgs4_2_in)

22

23 msgs1_3_in := []*tss.Message{msgs2_2[1], msgs3_2[1], msgs4_2[1]}

24 msgs2_3_in := []*tss.Message{msgs1_2[2], msgs3_2[2], msgs4_2[2]}

25 msgs3_3_in := []*tss.Message{msgs1_2[3], msgs2_2[3], msgs4_2[3]}

26 msgs4_3_in := []*tss.Message{msgs1_2[4], msgs2_2[4], msgs3_2[4]}

27

28 p1SaveData, err := setUp1.DKGStep3(msgs1_3_in)

29 if err != nil {

30 panic(fmt.Sprintf("Error on step 3 party 1: %s", err))

31 }

32 p2SaveData, err := setUp2.DKGStep3(msgs2_3_in)

33 if err != nil {

34 panic(fmt.Sprintf("Error on step 3 party 2: %s", err))

35 }

36 p3SaveData, err := setUp3.DKGStep3(msgs3_3_in)

37 if err != nil {

38 panic(fmt.Sprintf("Error on step 3 party 3: %s", err))

39 }

40 p4SaveData, err := setUp4.DKGStep3(msgs4_3_in)

41 if err != nil {

42 panic(fmt.Sprintf("Error on step 3 party 4: %s", err))

43 }

44

45 fmt.Println("setUp1", p1SaveData, p1SaveData.PublicKey)

46 fmt.Println("setUp2", p2SaveData, p2SaveData.PublicKey)

47 fmt.Println("setUp3", p3SaveData, p3SaveData.PublicKey)

48 fmt.Println("setUp4", p4SaveData, p4SaveData.PublicKey)

49 }

Recommendation

KET-01 OKX (THRESHOLD-LIB)

The auditors recommend letting the pointed for cycles to terminate after info.Total iterations instead of

info.Threshold+1 , so that the DKG algorithm is completed on all parties with ID > t + 1 when n > t+1 .

Alleviation

Client fixed the issue and the pointed cycle is terminated after n iterations to cover all the involved parties.

See:

1. https://github.com/okx/threshold-

lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/tss/key/reshare/update_round3.go#L93

2. https://github.com/okx/threshold-

lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/tss/key/dkg/dkg_round3.go#L93

KET-01 OKX (THRESHOLD-LIB)

https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/tss/key/reshare/update_round3.go#L93
https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/tss/key/dkg/dkg_round3.go#L93

DLN-02 MISSING PRELIMINARY VALIDATION IN DLNPROOF
ALGORITHM VERIFICATION FUNCTION

Category Severity Location Status

Inconsistency Minor crypto/zkp/dlnproof.go: 50~73 Resolved

Description

The current DlnProof implementation is largely borrowed from Binance open source threshold signature library. The

corresponding code is located at https://github.com/bnb-chain/tss-lib/blob/master/crypto/dlnproof/proof.go. However, the

adapted code removed the preliminary validation code from original function, as shown in the following:

if p == nil {

 return false

}

if N.Sign() != 1 {

 return false

}

modN := common.ModInt(N)

h1_ := new(big.Int).Mod(h1, N)

if h1_.Cmp(one) != 1 || h1_.Cmp(N) != -1 {

 return false

}

h2_ := new(big.Int).Mod(h2, N)

if h2_.Cmp(one) != 1 || h2_.Cmp(N) != -1 {

 return false

}

if h1_.Cmp(h2_) == 0 {

 return false

}

for i := range p.T {

 a := new(big.Int).Mod(p.T[i], N)

 if a.Cmp(one) != 1 || a.Cmp(N) != -1 {

 return false

 }

}

for i := range p.Alpha {

 a := new(big.Int).Mod(p.Alpha[i], N)

 if a.Cmp(one) != 1 || a.Cmp(N) != -1 {

 return false

 }

}

DLN-02 OKX (THRESHOLD-LIB)

https://github.com/bnb-chain/tss-lib/blob/master/crypto/dlnproof/proof.go

The Verify function of DLNProof Algorithm takes input from other party and it is necessary to perform preliminary checking

to ensure the legitimacy of passed parameters before performing actual verification step.

Recommendation

It is recommended for the developers to add back the parameters validation code in Verify function of DLNProof

Algorithm.

Alleviation

The preliminary validation has been improved and aligned with original implementation.

See: https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/crypto/zkp/dln_proof.go#L46

DLN-02 OKX (THRESHOLD-LIB)

https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/crypto/zkp/dln_proof.go#L46

PAR-01 MISSING VALIDATION ON MESSAGE ENCODING

Category Severity Location Status

Incorrect Calculation Minor tss/ecdsa/sign/party1.go: 26, 32 Resolved

Description

The code to initiate a signature session for the ECDSA algorithm takes as an initialization parameter the message to sign.

Such parameter will not be taken into consideration before the second message by party 2, since some coefficient

generation is necessary before proceeding with the calculation of the final signature components.

The message parameter is treated as an hexadecimal string and converted into its byte representation. However, no check

is enforced on message in the initialization phase. If the passed string is not a valid hexadecimal string, the implementation

would abort the signing procedure with an error and the effort put in the first part of the protocol may be wasted.

Recommendation

The auditors recommend including a check that the message string contains hexadecimal characters only so that its

decoding operation to a byte string can not go in error for such reason in the final steps of the signing protocol.

Alleviation

The team included the suggested checks on the correctness of the hexadecimal message.

See: https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/tss/ecdsa/sign/party1.go#L45

https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/tss/ecdsa/sign/party2.go#L42

PAR-01 OKX (THRESHOLD-LIB)

https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/tss/ecdsa/sign/party1.go#L45
https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/tss/ecdsa/sign/party2.go#L42

POL-01 MISSING ERROR CHECK AND BOUNDARY CHECK IN
FUNCTION InitPolynomial

Category Severity Location Status

Coding Issue Minor crypto/vss/polynomial.go: 19~34 Resolved

Description

Inadequate Error Handling: The function rand.Prime(rand.Reader, q.BitLen()) used in the InitPolynomial function is

designed to return a randomly generated prime number and an error. The current implementation ignores this error, leading

to a potential issue where the function could fail silently. If the random number generation fails for any reason, r may be

nil or invalid, and this could lead to unexpected behavior or runtime errors when r is used later in the code.

Lack of Boundary Checks: The InitPolynomial function accepts a parameter degree which is used to create an array and

also controls the flow of a loop. Currently, there is no check to ensure that degree is a non-negative value. If a negative value

is passed as degree, it could lead to unexpected behavior such as an error in creating the array or an infinite loop.

Recommendation

First, the auditors suggest to implement error handling for the rand.Prime function. At the very least, check if the error is

not nil and if so, return an error from InitPolynomial . This will ensure that any issues with the generation of the random

prime number are caught and handled appropriately.

Second, please consider add a boundary check at the beginning of the function to verify that degree is a non-negative

value. If degree is negative, the function should return an error or handle the situation in a way that is appropriate for the

context in which it is used.

Alleviation

The degree parameter is validated and the random number generator error is returned at well.

See: https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/crypto/vss/polynomial.go#L22

POL-01 OKX (THRESHOLD-LIB)

https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/crypto/vss/polynomial.go#L22

SCN-01 DISCREPANCY BETWEEN IMPLEMENTATION AND
SPECIFICATION IN SCHNORR PROOF ALGORITHM

Category Severity Location Status

Coding Issue Minor crypto/schnorr/schnorr_proof.go: 24~26 Acknowledged

Description

In the Schnorr proof implementation, the computation of the challenge value h doesn't match with the specification.

According to the specification, the challenge c is computed as H(G || V || A) , where H is a hash function, G is the

base point of the elliptic curve, V = rG is the random commitment, and A is Alice's public key.

However, in the implementation, the challenge h is computed as crypto.SHA256Int(X.X, X.Y, R.X, R.Y) , which is a

hash of the X and Y coordinates of the public key X and the random commitment R . The base point G is not included

in the computation.

This discrepancy between the implementation and the specification can lead to potential vulnerabilities or incorrect results

when using the Schnorr proof. The implementation needs to be corrected to follow the specification.

Recommendation

To align the implementation with the Schnorr proof specification, the challenge h should be calculated according to the

specification as H(G || V || A) .

The developers should consider modifying the code to include the base point G in the hash computation. The base point

G could be represented as its coordinates (G.X, G.Y) .

The line in the Prove function should be updated from:

h := crypto.SHA256Int(X.X, X.Y, R.X, R.Y)

To:

Gx, Gy := X.Curve.Params().Gx, X.Curve.Params().Gy

h := crypto.SHA256Int(Gx, Gy, R.X, R.Y, X.X, X.Y)

Alleviation

Client stated that G is a constant point, and therefore does not impact the validity of proof.

SCN-01 OKX (THRESHOLD-LIB)

SIG-01 MISSING ROUND ENFORCEMENT IN ECDSA CONTEXTS

Category Severity Location Status

Volatile Code Minor tss/ecdsa/sign/party1.go: 21~29; tss/ecdsa/sign/party2.go: 15~23 Acknowledged

Description

The cryptography algorithms implemented in the codebase in scope strictly follow their reference paper by wrapping each

step or round of a party participating in the protocols in dedicated methods of a single struct. The context of each session of

an algorithm is kept by storing information in the assigned method struct, while messages coming from the interacting

counterparties are passed as methods parameters.

By following this pattern it is important that struct methods are executed according to the prescribed order so that the struct

state is consistent with the algorithm progress in a certain session. Any wrong method call would invalidate the state, cause

an information loss and force the algorithm session abort. In order to avoid such situation, the structs wrapping the context

for Distributed Key Generation with Verified Secret Sharing, Key Reshare and Ed25519 signature include a RoundNumber

field which explicitly track the algorithm progress. Then, all the methods implementing algorithm steps check if the current

RoundNumber is the one supposed to be in the invoked round before executing the assigned logic and update the

RoundNumber , as well.

However, such verification mechanism of the current round is absent in the ECDSA signature implementation based on

Lidell17. In this way, the correctness of methods call order is completely delegated to the library caller, which may not be

aware of such constraints or may unwillingly implement a faulty logic.

Recommendation

The auditors recommend including the verification of the current algorithm round in the ECDSA implementation, too, so that

the library denies calls to the algorithm round logic in the wrong order.

Alleviation

Client stated the verification of algorithm rounds was implemented in upper level services.

SIG-01 OKX (THRESHOLD-LIB)

https://eprint.iacr.org/2017/552.pdf

TSK-01 MISMATCH ON CHAINCODE USAGE IN BIP-32 KEY
DERIVATION

Category Severity Location Status

Inconsistency Minor tss/key/bip32/tsskey.go: 86, 88 Acknowledged

Description

The BIP-32 specification document adopts HMAC-SHA512 for generating derived child data from parent information. Such

algorithm provides data authentication through an hash function and a key. It takes two parameters, an authentication key

and the data to authenticate.

The BIP-32 specification uses what it calls chaincode as authentication key, and the parent public key concatenated with the

derivation index as data to authenticate.

However the derivation function implemented at the pointed location uses a constant hard-coded string as authentication key

and prepends the chaincode to the data to authenticate. Even though such changes do not introduce security problems

thanks to the hash function properties, the BIP-32 definitions are not respected, so the library can not claim to be compliant

and interoperable with correct implementations of such standard.

Recommendation

The auditors recommend following the BIP-32 specification by using the chaincode as HMAC-SHA512 authentication key

and removing the constant label from the child key calculation.

Alleviation

The client team decided to remain unchanged as the BIP-32 specification is not considered a strict requirement for them.

TSK-01 OKX (THRESHOLD-LIB)

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

TSK-02 MISSING VALIDATION ON CHILD KEY PAIR CALCULATION

Category Severity Location Status

Inconsistency Minor tss/key/bip32/tsskey.go: 41, 47, 49 Resolved

Description

The BIP-32 specification provides a method to generate child key-pairs from a parent one through an hash function and

exploiting the linearity of operations in the elliptic curve group.

When, given a chaincode, an index, and a parent key-pair, a new key is calculated, there are two outcomes that need to be

validated before the procedure can be successfully concluded.

First, the integer resulting from the 32 least significant bytes of the HMAC-SHA512 outcome must be strictly less than the

order of the elliptic curve (the offset variable). Second, the obtained public key (ecPoint variable) must not be the point-

at-infinite of the curve. In either cases the procedure did not generate a valid child key pair. In particular, the BIP-32

document specifies that a new generation attempts should be made with the next value of the index.

Even though there is vary low probability that the describes conditions arise, the algorithm should manage them in order to

cover all the possible cases.

Recommendation

The auditors recommend including the described checks in the pointed function to both correctly generate a usable key-pair

and be compliant with the BIP-32 specification.

Alleviation

The client team added the suggested validation on the generated child key.

See https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/tss/key/bip32/tsskey.go#L56

TSK-02 OKX (THRESHOLD-LIB)

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/tss/key/bip32/tsskey.go#L56

TSK-03 MISSING HARDENED KEY DERIVATION IMPLEMENTATION

Category Severity Location Status

Inconsistency Minor tss/key/bip32/tsskey.go: 41 Resolved

Description

The BIP-32 specification makes a distinction between the generation of non-hardened and hardened key-pairs.

The former are child key-pairs meant to work themselves as parent key-pairs for new derivations, while the latter do not allow

for the derivation of a new public key from the parent public key.

Such distinction is made explicit by partitioning the index space into two intervals, respectively and

.

However, the derivation algorithm implemented in the NewChildKey does not account for the described distinction and all

indexes are used for the non-hardened derivation.

Recommendation

The auditors recommend following the distinction between hardened and non-hardened derivation through indexes and, if

the hardened method is not planned to be supported, we suggest including a check which rejects the generation of non-

hardened key-pair using indexes assigned to hardened key-pairs.

Alleviation

The client team solved the issue validating that the requested child key index is not an hardened generation, which is not

supported.

See: https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/tss/key/bip32/tsskey.go#L46

TSK-03 OKX (THRESHOLD-LIB)

[0; 2 −31 1] [2 ; 2 −31 32

1]

https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/tss/key/bip32/tsskey.go#L46

COI-01 NON TIMING-CONSTANT INT VALUE COMPARISON

Category Severity Location Status

Language Design Issue Informational crypto/commitment/commitment.go: 46~49 Acknowledged

Description

The hash.Cmp(C) == 0 code used in commitment verification is not a constant comparison procedure which could

potentially lead to timing side channel attack. Although the auditors did not notice it is exploitable at this moment but it is

suggested to perform constant timing comparison.

Recommendation

Constant time arithmetic is currently not supported in Go int package, see proposal: math/big: support for constant-time

arithmetic. We suggest the developers to keep an eye on the development of Go constant time comparison implementation

for future improvement.

Alleviation

Client stated that this is a Go limitation and thus cannot be remediated at this moment.

COI-01 OKX (THRESHOLD-LIB)

https://github.com/golang/go/issues/20654

COR-01 OUTDATED REFERENCE PAPER FOR PAILLER
CORRECTNESS PROOF

Category Severity Location Status

Inconsistency Informational crypto/paillier/correct_key_ni.go: 13 Resolved

Description

The reference paper reporting the parameters for the proof of correctness in the Pailler key-pair generation is outdated. In

fact, it currently reports an update of the Lindell algorithm, made by Lindell et al., which gets rid of the Pailler homomorphic

encryption scheme.

Recommendation

We recommend updating the reference paper to the correct version so that the codebase in scope has a clear pointer to the

rationale behind the implementation.

Alleviation

Reference link updated.

See: https://github.com/okx/threshold-

lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/crypto/paillier/correct_key_ni.go#L13

COR-01 OKX (THRESHOLD-LIB)

https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/crypto/paillier/correct_key_ni.go#L13

CRY-03 INCONSISTENT RANDOM NUMBER ERROR HANDLING

Category Severity Location Status

Coding Style Informational crypto/paillier/paillier.go: 173~187; crypto/utils.go: 36~49 Resolved

Description

Random number generation plays a critical role in the threshold library. There are two main random number generation

functions used in this library.

1. getRandom in paillier.go for generating a random number r which is r < n and gcd(r,n) = 1 .

func getRandom(n *big.Int) (*big.Int, error) {

gcd := new(big.Int)

r := new(big.Int)

var err error

for gcd.Cmp(one) != 0 {

r, err = rand.Int(rand.Reader, n)

if err != nil {

return nil, err

}

gcd = new(big.Int).GCD(nil, nil, r, n)

}

return r, nil

}

2. RandomNum in utils.go which generate a random number r which is 1 < r < n .

func RandomNum(n *big.Int) *big.Int {

if n == nil {

panic(fmt.Errorf("RandomNum error, n is nil"))

}

for {

r, err := rand.Int(rand.Reader, n)

if err != nil {

panic(fmt.Errorf("RandomNum error"))

}

if r.Cmp(one) == 1 {

return r

}

}

}

CRY-03 OKX (THRESHOLD-LIB)

There are several inconsistent coding issues presented in the above code.

1. getRandom does not check against n == 0 where RandomNum does.

2. getRandom returns error message where RandomNum simply panics if are any random number generation issue.

3. Both function do not check if n is negative value.

Recommendation

The auditors suggest developers to unify the error handling scheme in function RandomNum and getRandom . Especially the

RandomNum function should carefully handle and return error message to caller as a library, instead of panic.

Alleviation

The parameter validations are updated according to suggestions.

CRY-03 OKX (THRESHOLD-LIB)

ECE-03 DEPENDENCY IMPORT ORDER FORMAT

Category Severity Location Status

Coding

Style
Informational

crypto/commitment/commitment.go: 6; crypto/paillier/paillier.go: 6; cr

ypto/schnorr/schnorr_proof.go: 4~7; crypto/vss/feldman.go: 4~7; cry

pto/zkp/dlnproof.go: 15~16; crypto/zkp/pdl_w_slack_proof.go: 18~2

1; tss/common.go: 8; tss/ecdsa/keygen/alice.go: 7; tss/ecdsa/keyge

n/bob.go: 12; tss/ecdsa/sign/party2.go: 12; tss/ed25519/sign/ed255

19.go: 7; tss/ed25519/sign/round3.go: 14; tss/key/dkg/dkg_round.g

o: 9; tss/key/dkg/dkg_round1.go: 10; tss/key/dkg/dkg_round3.go: 1

3; tss/key/reshare/update_round.go: 10; tss/key/reshare/update_rou

nd1.go: 10; tss/key/reshare/update_round3.go: 12

Resolved

Description

The math/big library is always included at the end on the import list, while according to the gofmt formatting, it should be

placed with the Go standard library before external dependencies. Also, external dependencies should go at the end of the

import list.

Recommendation

We recommend complying with the gofmt formatting guidelines, including library imports in the correct order and running

the gofmt tool on all the source files.

Alleviation

The client team changed import order of dependencies according to the gofmt style.

Commit 8f5867bb383539ef2ad8f32b991d61af7cee7a61 contains such changes.

ECE-03 OKX (THRESHOLD-LIB)

https://github.com/okx/threshold-lib/tree/8f5867bb383539ef2ad8f32b991d61af7cee7a61

GOE-01 POTENTIAL VULNERABLE RUNTIME VERSION

Category Severity Location Status

Language Version Informational go.mod: 1~4 Acknowledged

Description

The audited Go project is designated to run with version 1.17. However, Go language (before version 1.19.5) suffers an

issue (GO-2023-1621) where the ScalarMult and ScalarBaseMult methods of the P256 Curve may return an incorrect result

if called with some specific unreduced scalars. Although this does not directly impact the audited project for now, this may

impact future version of the audited library.

Similarly, Go language runtime (version 1.17) also suffers an issue (GO-2023-1840) on Unix platform which could lead to

information leakage or privilege escalation. Although the audited code is used as library instead of full binary, the users of this

library may keep the same Go version thus auditor still consider this as potential impact.

Recommendation

Please consider use latest version of Go language if possible. Auditor did not find any hard dependencies on old version Go

language features.

Alleviation

The client stated that they will upgrade the GO version in the future according to the internal policy.

GOE-01 OKX (THRESHOLD-LIB)

https://pkg.go.dev/vuln/GO-2023-1621
https://pkg.go.dev/vuln/GO-2023-1840

KET-02 PANIC USED INSTEAD OF ERROR MESSAGES

Category Severity Location Status

Coding

Style
Informational

tss/key/dkg/dkg_round.go: 29~34; tss/key/reshare/update_round.

go: 31~37
Declined

Description

In function NewRefresh and NewSetUp of this library, the developers check parameter total to unsure the number of

participated parties is no less than 2. However, the code simply panics if the constrain does not meet. As a library which can

be used as part of code in other developers' project, the auditors suggest that use error message instead of panic to show

that the passed parameters are inappropriate, which is consistent with the rest of the library coding style.

Recommendation

It is recommended to use error message instead of panic.

For instance, change the code style to:

func NewRefresh(deviceNumber, total int, devoteList [2]int, ShareI *big.Int,

PublicKey *curves.ECPoint) (*RefreshInfo, error) {

 if total < 2 || deviceNumber > total || deviceNumber <= 0 {

 return nil, fmt.Errorf("NewRefresh params error")

 }

 // Rest of your code...

 return refreshInfo, nil

}

Alleviation

The client stated that if this library is misused in the described manner, it is a manifestation of a deep misunderstanding and

the code should panic.

KET-02 OKX (THRESHOLD-LIB)

PDL-01 INVALID REFERENCE PAPER URL

Category Severity Location Status

Invalid Reference Informational crypto/zkp/pdl_w_slack_proof.go: 10~11 Resolved

Description

The address of cited paper regarding NewPDLwSlackProof design is invalid. Accessing to

https://www.cs.unc.edu/~reiter/papers/2004/IJIS.pdf is no longer valid.

Recommendation

Please consider update the link to referred paper to https://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.58.2603

Alleviation

Reference paper link has been updated.

See: https://github.com/okx/threshold-

lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/crypto/zkp/pdl_w_slack_proof.go#L15

PDL-01 OKX (THRESHOLD-LIB)

https://github.com/okx/threshold-lib/blob/8f5867bb383539ef2ad8f32b991d61af7cee7a61/crypto/zkp/pdl_w_slack_proof.go#L15

RES-01 UNNECESSARY COMPUTATION OF RANDOM
POLYNOMIAL IN NON-DEVOTEES

Category Severity Location Status

Coding

Issue
Informational

tss/key/reshare/update_round.go: 53~55; tss/key/reshare/upd

ate_round1.go: 18~37, 45~55; tss/key/reshare/update_round

2.go: 33~37, 45~59

Acknowledged

Description

The aim of the key reshare process is to make a change in the set of shareholders while keeping the same global key-pair.

This is achieved through the participation of two shareholders from the old set which, relying on their shares, act as dealers

of new shares for the new set of shareholders. Such dealers are called devotees in the codebase while non-devotees

simply verify the incoming information in order to assess that the process was concluded successfully.

In the current implementation, non-devotees generate a local secret, a random polynomial to share such secret, a Schnorr

proof to demonstrate the knowledge of the secret and the verifiers of the polynomial coefficient. Such data are also

forwarded in the messages of step 1 and 2. However, all these computations are not necessary since the only source of

information is represented by the devotees, and only their messages will be actually verified and taken into account in step 3

when finalizing the reshare algorithm.

Recommendation

The auditors recommend saving the generation of the useless data reported in the description by restricting the generation of

new polynomials along with their proof and verifiers only to the devotees, in charge to distribute the refreshed shares.

Alleviation

The client team decided to remain unchanged the current implementation as it does not affect the security of the algorithm.

RES-01 OKX (THRESHOLD-LIB)

OPTIMIZATIONS OKX (THRESHOLD-LIB)

ID Title Category Severity Status

CRY-02 Hard-Coded Source Of Randomness Coding Style Optimization Acknowledged

UTL-01 Unnecessary Memory Allocation Coding Issue Optimization Acknowledged

OPTIMIZATIONS OKX (THRESHOLD-LIB)

https://acc.audit.certikpowered.info/project/35970d20-ef4f-11ed-8f73-37924bfb7bbc/report/new?fid=1687855278855
https://acc.audit.certikpowered.info/project/35970d20-ef4f-11ed-8f73-37924bfb7bbc/report/new?fid=1688028750402

CRY-02 HARD-CODED SOURCE OF RANDOMNESS

Category Severity Location Status

Coding Style Optimization crypto/paillier/paillier.go: 179; crypto/utils.go: 42, 61 Acknowledged

Description

The generation of random numbers in a crypto safe way plays a paramount role in ensuring the security of the implemented

cryptographic algorithms. Such task can be delegated to the underlying operating system which offer such service using a

mixture of hardware and software mechanism to generate unpredictable and unique random values. In particular, the

codebase in scope always relies on the standard rand.Reader utility which, calling the operating system, generates

random strings of bytes.

However, there are some cases in which users of crypto wallets require strong guarantees of randomness for some reasons:

the runtime environment may not be fully trusted, several source of randomness may be required, an external dedicated

hardware for random number generation may be available, and so on.

Moreover, given the sensibility of the implemented algorithms, a common testing practice is to compare the implementation

with the same algorithm executed in a different programming language. Since many algorithms rely on random numbers and

results are not deterministic, in order to perform such tests, deterministic random number generators are put in place so the

final results and intermediate outcomes can be compared.

Since the codebase in scope implements cryptographic algorithm built on top of a secure random number generator, the

randomness security is not a responsibility of the library and hard-coding it to the default random byte generator of Go may

be limiting for the library usage.

Recommendation

We recommend replacing the hard-coded rand.Reader usage with a generic io.Reader interface so that the source of

randomness can be passed to the library as a parameter and the use case reported in the description can be realized.

Alleviation

The client team decided to leave unchanged the current implementation.

CRY-02 OKX (THRESHOLD-LIB)

UTL-01 UNNECESSARY MEMORY ALLOCATION

Category Severity Location Status

Coding Issue Optimization tss/ed25519/sign/utils.go: 8 Acknowledged

Description

The s variable in the bigIntToEncodedBytes function is initialized as a reference to a 32 byte array through the new

operator which also allocates memory for the specified type.

However, the memory allocated at variable initialization is practically unused since the a new byte array is allocated by the

copyBytes function and the reference is replaced.

Recommendation

It is recommend initializing the s variable with the copyBytes outcome and allocating a new empty array only in the case

of a == nil .

Alleviation

The client team decided to leave unchanged the current implementation.

UTL-01 OKX (THRESHOLD-LIB)

APPENDIX OKX (THRESHOLD-LIB)

Finding Categories

Categories Description

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can

be improved to make the code more understandable and maintainable.

Language

Version

Language Version findings indicate that the code uses certain compiler versions or language

features with known security issues.

Coding Issue
Coding Issue findings are about general code quality including, but not limited to, coding mistakes,

compile errors, and performance issues.

Incorrect

Calculation

Incorrect Calculation findings are about issues in numeric computation such as rounding errors,

overflows, out-of-bounds and any computation that is not intended.

Inconsistency
Inconsistency findings refer to different parts of code that are not consistent or code that does not

behave according to its specification.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases

and may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX OKX (THRESHOLD-LIB)

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER OKX (THRESHOLD-LIB)

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER OKX (THRESHOLD-LIB)

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

OKX (Threshold-lib) Security Assessment CertiK Assessed on Oct 11th, 2023 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

